
14

 	 ACA History - Bill Busing	 Summer 2011

Crystallographic Computing at Oak Ridge
National Laboratory 1954 to 1968
ACA President (1971) and winner of the ACA Buerger Award

(1985) William R. Busing is known for his many contributions
to the computing side of x-ray and neutron diffraction. The
computer program ORFLS (Oak Ridge Structure Factor Least
Squares) that he and Levy originated at Oak Ridge National
Laboratory was widely used by a generation of crystallogra-
phers. In this narrative Bill describes the programming chal-
lenges in the early days of crystallographic computing. This
article, complete with references, can be found in the IUCr
Commission on Crystallographic Computing Newsletter No. 8,
available at http://iucrcomputing.ccp14.ac.uk/iucr-top/comm/
ccom/newsletters/2007nov/
The ORACLE (Oak Ridge Automatic Computer and Logi-

cal Engine)
I arrived at Oak Ridge National Laboratory (ORNL) in Sep-

tember, 1954, and joined the neutron crystallography group
headed by Henri A. Levy. My previous work had been in Raman
and infrared spectroscopy and I was interested in structures, but
I had very little knowledge of crystallography. I was certainly
aware of the pioneering work that had been done by Henri to-
gether with Selmer W. Peterson, who was on sabbatical for the
year. I started out by trying to grow millimeter-sized crystals of
various hydroxides.

I knew that
H e n r i h a d
been learning
to program for
the ORACLE
and when I ex-
pressed some
interest in this,

he offered to teach
me all about it while I waited for crystals to grow. According to
Henri, the first step in writing a program is to make a flow chart,
a procedure that I have found useful in all my subsequent work.
We started out by writing a simple program to calculate Bragg
angles and put out an ordered list. The ORACLE, a vacuum-tube
computer that occupied a large room, had been built at Argonne
National Laboratory by ORNL personnel and installed here
during the previous year. Its cathode-ray-tube (CRT) memory
consisted of 1024 40-bit words. Each word can be described as
ten hexadecimal characters, using the symbols 0 to 9 and A to
F. A word could be treated as one fixed-point number or as two
five-character commands. Each command used two characters for
the command and three for an address ranging from 000 to 3FF.

Fixed-point additions and subtractions were done in a 41-bit
accumulator, or A register, and multiplications and divisions used
a 40-bit Q, or quotient register. Numbers in these registers could
be shifted left or right, using either one or both registers. There
were no index registers or indirect addressing. To step through a
loop, we would set a counter initially and then increment it and
test it on each pass through the loop. To step through an array,
we would set an initial address in a command. Then after each
pass we would pick it up, increment it, and put it back.

Input and output were done with five-hole teletype tape. Four
hole positions were used for the characters 0 to F and the fifth was
a parity check. Input tapes were prepared by typing on teletype
machines, and output tapes were printed on these same machines.

Programs were prepared in hexadecimal and temporary storage
locations were assigned. If p or other constants were needed, they
would be manually converted to hexadecimal and included in
the program. Then the program would be manually typed onto
tape so that it could be loaded into the ORACLE, starting at a
specified location. Input and output subroutines were available
so that decimal data could be read by a program and output could
be converted to decimal, punched, and later printed off line.

At the console of the ORACLE was a cathode-ray tube that
displayed the 32 x 32 grid representing one bit of the 40-bit
words in the memory. One could follow the course of a program
by watching where the spots brightened momentarily. A speaker
also produced an audio signal as the commands were executed,
and one could get to know what a particular program sounded
like. Our Bragg-angle program was finally ready for its initial
tests just before the December holidays. The program was loaded
and started, but shortly thereafter the speaker started emitting
a continuous tone and one area of the memory lit up brightly
indicating that the program was in an unending loop. We fol-
lowed the usual procedure of punching out and printing a dump
of the memory contents. Overnight I found what I hoped was the
single bug, and the next day I went back to get another shot at
the ORACLE. But it was Christmas Eve, the mathematics party
was in full swing, and the ORACLE was playing Christmas
carols! I had to wait till after the holidays to get my first list of
ordered Bragg angles.
Absorption-correction software for the ORACLE
The first crystals that I was able to grow were calcium hydroxide.

The heavy-atom positions were known from the early x-ray work
of Bernal and Megaw, who also postulated the hydrogen positions.
In previous neutron diffraction studies by Levy and Peterson the
practice had been to grind the samples to a cylindrical shape,
so that tabulated absorption corrections could be applied. This
had been done by putting the oriented crystal on a sandblasting
lathe and grinding the edges off. But calcium hydroxide is a layer
structure that cleaves like mica, and the sandblaster immediately
caused the crystals to open up like the pages of a book. This led
Henri and me to consider whether we could use the ORACLE
to calculate the absorption correction for a crystal whose shape
had been carefully measured.

In the first version of this absorption program, we integrated the
correction over a few hundred equally spaced scattering points
within the crystal volume. Later a consultation with mathemati-
cians showed us that we could get better accuracy by selecting
the points and weighting the contributions according to the rules
of Gaussian integration. This program and a later Fortran ver-
sion were used for all our neutron-diffraction studies after that.

Structure-factor data for fifty-three h0l reflections from calcium
hydroxide were measured at two temperatures, and Henri sug-
gested that we should make a Fourier projection. He had com-
missioned the ORNL Math Panel to prepare a Fourier program
for us, but our first tries at using that program showed that it
would be very tedious to use. This led us to prepare a new two-

 Henri Levy and Bill Busing

16

 	 ACA History - Bill Busing	 Summer 2011

dimensional Fourier program more suitable for crystallographic
purposes. This program initially calculated a look-up table with
all the values of the sines and cosines that would be needed. Most
of the rest of the memory was allocated to the map that would be
produced. The indices and structure factor were read from paper
tape one reflection at a time, and its contribution was added to
each point of the map. After all the reflections had been included
an output tape was punched so the map would be printed in a
suitable format to be contoured by hand
Least-squares software written for the ORACLE
To get more precise coordinates and interatomic distances,

Henri suggested that we could use the method of least squares.
My knowledge of least-squares refinement was based on Mar-
genau and Murphy. I was not even aware of the pioneering
crystallographic least-squares refinement work of Hughes. The
parameters for calcium hydroxide included two coordinates,
six anisotropic temperature-factor coefficients, and a scale fac-
tor, for a total of nine parameters. The ORACLE program that
we wrote was probably designed for this particular problem.
The appropriate derivatives were used to set up the full matrix,
and a subroutine was available to solve the nine simultaneous
equations. The four cycles of least-squares adjustments needed
for convergence took about twenty minutes of ORACLE time.

In order to calculate the standard errors of the distances and
angles, we needed the variance-covariance matrix that could be
derived from the inverse of the least-squares matrix; but no matrix
inverter was available for the ORACLE at that time. Instead, we
inverted the matrix by solving nine simultaneous equations a total
of nine times, using as the nine column vectors (1,0,0,0,0,0,0,0,0),
(0,1,0,0,0,0,0,0,0), etc. The nine solution vectors then formed the
columns of the inverse matrix.

At about this time Henri and I realized the desirability of
writing a generalized least-squares program that could be used
to adjust the parameters defining any arbitrary function. The
function would be provided by the user, who would need only
to write a subroutine to evaluate the function based on the pa-
rameters and the values of one or more independent variables
for which experimental values had been obtained. For example,
we refined the lattice parameters of diaspore using observations
of the Bragg angles from an x-ray powder pattern. Here the
independent variables were the indices, along with an indicator
as to whether the wavelength for an α1, an α2, or an unresolved
line should be used.

A unique feature of this general least-squares program was that
the user had the option of calculating the required derivatives of
the function with respect to the parameters or letting the program
calculate derivatives numerically. In the latter case the user would
just provide a list of increments to be added to one parameter
at a time. The function was recalculated with the incremented
parameter, and the derivative was taken as the ratio of the change
in the function to the parameter increment. This program and
its successors were so easy to use that other groups at ORNL
and elsewhere used it routinely to analyze thermodynamic data,
spectral patterns, and other complicated functions.

Crystallographic least-squares refinement on the IBM 704
About 1958 an IBM 704 computer became available at the

gaseous diffusion plant in Oak Ridge. Although this required a
drive of about seven miles, the advantages over the ORACLE
were considerable. These included a memory of 8,192 36-bit
words, hardware floating-point arithmetic, index registers,
removable magnetic tapes, and punched card input and output.
An assembler was available to facilitate writing programs that
would be automatically converted to binary form.

Henri and I decided to write a least-squares program that could
be used for the refinement of any crystal structure based on x-
ray or neutron-diffraction data. Whenever we couldn’t decide
how to do something we left it as an option for the user. Thus
the program could refine a structure based on either F or F2. An
overall temperature factor or individual isotropic or anisotropic
temperature factors could be used. Symmetry cards were included
to allow for the refinement of any centrosymmetric or noncentro-
symmetric structure. Atom multipliers were provided to correctly
weight atoms in special positions or to treat disordered structures.
Anomalous scattering factors could be included. Different scale
factors could be applied to data from different samples. Henri
and I wrote a program to invert a sym-
metric matrix in the space required to
store only its unique upper-triangular
elements. Although this program was
later shown to be rather inefficient, it
allowed for the adjustment of up to 120
parameters in the 8,192-word memory.
When Carroll Johnson joined our
group in 1962, he and Henri wrote an
improved matrix inverter that made use
of the Choleski method of factoring
a symmetric matrix.

We wanted to distribute this program to anyone who requested
it. However, with instructions punched one per card, the source
program consisted of over 4,000 cards. We considered that this
would be too expensive to copy and ship. Instead, we distributed
copies of the binary card decks that were produced by the assem-
bler. A handbook was available that gave detailed instructions
on how to use the program.

In 1961 Kay Martin of the ORNL Math Panel joined our group
to help with computer programming. Her first job was to convert
the structure-factor least-squares program to Fortran. This made
it easier for us to distribute the source program either on punched
cards or via magnetic tape. When the ORACLE was replaced
by the Control Data 1604 and later by the IBM 360, the Fortran
program was easily adapted to the new computers.

Availability of the Fortran source code also allowed others to
make changes in the program. Jim Ibers and Walter Hamilton of
BNL improved the form for input of the symmetry information.
Methods of correcting for extinction were introduced. Carroll
added the ability to refine more complicated forms of thermal
motion. No further printed reports were written, but the instruc-
tions included with the distributed program were kept up to date.
The latest version lists nine persons as contributing authors. In
1982 Current Contents listed the 1962 report as a Citation Clas-
sic that had been cited more than 3000 times.

 Carroll Johnson

17

 	 ACA History - Bill Busing	 Summer 2011

 The primary purpose of most crystallographic investigations
is to obtain detailed information about the chemical structures
of the molecules or ions involved. After the lattice parameters,
atomic coordinates, and temperature factor coefficients have
been obtained, it is desirable to calculate bond distances, bond
angles, torsion angles, and other quantities, some of which de-
pend on the observed thermal motion. It certainly is useful to
obtain the standard errors of the calculated quantities, and these
can be calculated in a straightforward way from the variance-
covariance matrix that is proportional to the inverse matrix of
the normal equations.

After completing the first version of our crystallographic
least-squares program Henri and I proceeded to write a Fortran
program to calculate some fifteen different kinds of functions
together with their standard errors. The functions calculated
included bond distances, bond angles, torsion angles, the differ-
ence between two bond distances or angles, the sum of several
bond angles, and nine more functions involving thermal motion.

 The calculation of standard errors requires the values of the
derivative of the function with respect to each parameter involved.
A unique feature of this program is that, instead of deriving ex-
pressions for these derivatives, we decided to determine them
numerically by adding an increment to a parameter, recalculat-
ing the function, and computing the derivative as the ratio of the
change in the function to the parameter increment. This method
produces a correct result, even when certain parameters are con-
strained by symmetry or for some other reason, provided that the
constraint is reapplied each time a parameter is incremented.

 Provision was made for the user to write subroutines defining
any new functions desired. Available for this purpose were sub-
routines for picking up atomic coordinates and temperature factor
coefficients, manipulating matrices and vectors, and calculating
angles. Other mathematical routines could also be used. This
program was later modified by Kay Martin to conform to the
Fortran version of the least-squares program. It has been kept
up to date with a few improvements and has been generally
distributed on request together with the least-squares program.
Three-circle neutron diffractometer control using paper tape
Shown in Fig. 1 is the three-circle neutron diffractometer

that we installed in 1960 at the newly operational Oak Ridge
Research Reactor. A crystal
monochromator centered in a
concrete shield reflected the
neutrons to produce a verti-
cal beam. A General Electric
diffractometer was mounted
on its side to support the ap-
propriately counter-weighted
neutron counter. Centered on
this instrument was a ring to
provide the chi-angle orienta-
tion and support the phi-angle
drive.

Fig. 1: The three-circle paper-tape controlled neutron dif-
fractometer. (Photograph courtesy of ORNL).

This instrument was controlled by electronics that read the
desired two theta, chi, and phi angles from paper tape. Motors
would drive each shaft until the encoders registered the desired
angles. It was arranged that the final adjustment of each angle
would always be made slowly in the same direction to avoid
backlash problems.

With this then-new type of instrument we no longer needed to
orient a crystal sample. We only had to center it and determine its
orientation by observing the angles for two or more reflections.
ORACLE programs were written to use this angle information to
refine the orientation and prepare a tape with the angles for data
collection. It was arranged that after the electronics had set the
initial angles it would make a theta-two-theta step scan through
the reflection, punching the observed counts on an output paper
tape. This tape was then carried back to the ORACLE for further
data processing to obtain the integrated count and the peak position
in two-theta. Assuming that the counter has a large aperture, this
peak maximum occurs when the reflecting plane best satisfies the
Bragg condition. Deviations from the calculated two-theta were
then used to further refine the orientation and lattice parameters.

After the ORACLE was replaced by the Control Data 1604
computer the three-circle data collection programs were rewritten
for that machine. The Control Data 160A auxiliary computer was
used to convert from magnetic tape to paper tape and vice-versa.
Four-circle x-ray diffractometer control using a DEC PDP-5
In the fall of 1962 I went to England to spend a year on sab-

batical working with Owen Mills at the University of Manchester.
There the computer engineers were in the process of installing
the Ferranti Atlas supercomputer, a state-of-the-art machine that
was to run several programs at a time, switching them in and out
of memory from an auxiliary storage drum. Owen was having
a four-circle x-ray diffractometer built by Hilger-Watts, and he
intended to use the Atlas computer to control this instrument.
Working in this time-sharing mode, the diffractometer would use
only a small fraction of the computer’s resources.

I wrote computer programs to calculate instrument angles,
drive motors, center reflections, calculate orientation, and col-
lect intensity data. All these programs were written without the
presence of the diffractometer that was not delivered until April
of 1963. After the diffractometer was interfaced to the computer,
we were only permitted to test it on Saturday mornings, times set
aside for computer maintenance. After we got started it seemed
as though the Atlas would never run for more than about fifteen
minutes before it crashed. Then we would spend the rest of the
morning arguing with the engineers as to whether the problem
was with our software or with the computer hardware. I had to
leave Manchester before these problems were solved.

When I returned to Oak Ridge we wanted to install an automatic
four-circle x-ray diffractometer, but I was sure that we didn’t want
to interface it to a large time-sharing computer. Cole, Okaya, &
Chambers had recently described a diffractometer controlled
by a dedicated IBM 1620 computer, but that computer, at about
$100,000, was too expensive for our budget. Then we learned of
the DEC PDP-5 computer that was available for about $20,000.

We also knew that Tom Furnas of the Picker X-ray Corpora-
tion had recently designed and built a four-circle diffractometer

18

 	 ACA History - Bill Busing	 Summer 2011

that Picker intended to market for use with paper-tape control. It
didn’t take long for us to realize that we could easily control this
diffractometer with the PDP-5 computer. In 1965 we produced
the system shown in Fig 2.

Fig. 2: The
four-circle Picker
x-ray diffractom-
eter and the PDP-
5 computer that
was programmed
to control it (Pho-
tographs courtesy
of ORNL)

The PDP-5 (a
predecessor of the

PDP-8) had a core memory of 4096 12-bit words divided into
32 pages of 128 words each. An instruction occupied one word
and the type of instruction was defined by the first three bits so
there were only eight different kinds of commands. Six of these
instructions used seven bits to define an address that could be
either on the same page or on page zero, but it could also refer
to any location in the memory by indirect addressing. Hardware
arithmetic was limited to addition, but a complete package of
subroutines to perform floating point arithmetic was available.

Input or output was accomplished by a teletype interfaced
directly to the computer. Input could be typed or loaded from
punched-paper tape. Output could be printed or punched on tape.

We decided to use Slo-Syn stepping motors that took one
hundred steps to make a revolution. The angles of the Picker
diffractometer were geared to change one degree for each turn
of a drive shaft. Thus, with a motor on each shaft, the angles
two-theta, omega, chi, and phi could be set to the nearest 0.01
degree without the use of encoders. To provide a check on the
angles ORNL engineers designed an optical detector to signal
the computer at each even degree.

A feature of the PDP-5 that was new to us was the availability
of a hardware interrupt. Thus any external action, such as the
typing of a teletype key or the closing of a limit switch, could
interrupt the program that was operating and jump to a special
interrupt program. We knew that the Slo-Syn motors could run
smoothly at 300 pulses per second, so we arranged for a crystal-
controlled oscillator to interrupt the computer 300 times each
second. An interrupt program would check to see which motors
should be running and send a single pulse to step that motor
forward or backward. Every 30th clock interrupt was treated as
a tenth-of-a-second interrupt and used for timing counts or any
required delays.

At about the time the PDP-5 was delivered, Sharron King of
the ORNL Mathematics Division joined our group to help with
the diffractometer programming. Although an assembler pro-
gram was available for the PDP-5, we found it useful to create
an assembler program, written in Fortran, to run on the CDC
1604 and 160A computers. We put our instructions on punched
cards, and the assembler produced a binary tape that could be
loaded into the PDP-5.

The subroutines for floating point arithmetic, trigonometric

functions, and matrix operations took up about half of the memory.
The other half would be loaded with programs for the particular
operations we were performing. A setup program would be used
to search for reflections, center them, and establish initial lattice
parameters and sample orientation. Then a least-squares program
could be loaded to refine this information. Finally, a data col-
lection program would measure the reflections systematically,
making step scans and punching the results on paper tape. This
output tape would be processed further by the CDC computers.

This data collection system remained in operation for almost
twenty years. When it was acquired, the PDP-5 was one of the first
minicomputers at ORNL.
When it was finally decom-
missioned it was the oldest
computer at the laboratory.

This has been the story of
one group’s experiences in
the early uses of computers
for crystallography. Ev-
erything seemed new and
exciting at the time we were
working on it. We certainly
never envisioned the days
when similar things could be
done on a laptop computer
at unimagined speeds. But
that seems to be the way science works.

Bill Busing

