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Crystallographic Computing at Oak Ridge 
National Laboratory  1954 to 1968
ACA President (1971) and winner of the ACA Buerger Award 

(1985) William R. Busing is known for his many contributions 
to the computing side of x-ray and neutron diffraction.  The 
computer program ORFLS (Oak Ridge Structure Factor Least 
Squares) that he and Levy originated at Oak Ridge National 
Laboratory was widely used by a generation of crystallogra-
phers.  In this narrative Bill describes the programming chal-
lenges in the early days of crystallographic computing.  This 
article, complete with references, can be found in the IUCr 
Commission on Crystallographic Computing Newsletter No. 8, 
available at http://iucrcomputing.ccp14.ac.uk/iucr-top/comm/
ccom/newsletters/2007nov/
The ORACLE (Oak Ridge Automatic Computer and Logi-

cal Engine)
I arrived at Oak Ridge National Laboratory (ORNL) in Sep-

tember, 1954, and joined the neutron crystallography group 
headed by Henri A. Levy. My previous work had been in Raman 
and infrared spectroscopy and I was interested in structures, but 
I had very little knowledge of crystallography. I was certainly 
aware of the pioneering work that had been done by Henri to-
gether with Selmer W. Peterson, who was on sabbatical for the 
year. I started out by trying to grow millimeter-sized crystals of 
various hydroxides.

I knew that 
H e n r i  h a d 
been learning 
to program for 
the ORACLE 
and when I ex-
pressed some 
interest in this, 

he offered to teach 
me all about it while I waited for crystals to grow. According to 
Henri, the first step in writing a program is to make a flow chart, 
a procedure that I have found useful in all my subsequent work. 
We started out by writing a simple program to calculate Bragg 
angles and put out an ordered list. The ORACLE, a vacuum-tube 
computer that occupied a large room, had been built at Argonne 
National Laboratory by ORNL personnel and installed here 
during the previous year. Its cathode-ray-tube (CRT) memory 
consisted of 1024 40-bit words. Each word can be described as 
ten hexadecimal characters, using the symbols 0 to 9 and A to 
F. A word could be treated as one fixed-point number or as two 
five-character commands. Each command used two characters for 
the command and three for an address ranging from 000 to 3FF. 

Fixed-point additions and subtractions were done in a 41-bit 
accumulator, or A register, and multiplications and divisions used 
a 40-bit Q, or quotient register. Numbers in these registers could 
be shifted left or right, using either one or both registers. There 
were no index registers or indirect addressing. To step through a 
loop, we would set a counter initially and then increment it and 
test it on each pass through the loop. To step through an array, 
we would set an initial address in a command. Then after each 
pass we would pick it up, increment it, and put it back. 

Input and output were done with five-hole teletype tape. Four 
hole positions were used for the characters 0 to F and the fifth was 
a parity check. Input tapes were prepared by typing on teletype 
machines, and output tapes were printed on these same machines.

Programs were prepared in hexadecimal and temporary storage 
locations were assigned. If p or other constants were needed, they 
would be manually converted to hexadecimal and included in 
the program. Then the program would be manually typed onto 
tape so that it could be loaded into the ORACLE, starting at a 
specified location. Input and output subroutines were available 
so that decimal data could be read by a program and output could 
be converted to decimal, punched, and later printed off line. 

At the console of the ORACLE was a cathode-ray tube that 
displayed the 32 x 32 grid representing one bit of the 40-bit 
words in the memory. One could follow the course of a program 
by watching where the spots brightened momentarily. A speaker 
also produced an audio signal as the commands were executed, 
and one could get to know what a particular program sounded 
like. Our Bragg-angle program was finally ready for its initial 
tests just before the December holidays. The program was loaded 
and started, but shortly thereafter the speaker started emitting 
a continuous tone and one area of the memory lit up brightly 
indicating that the program was in an unending loop. We fol-
lowed the usual procedure of punching out and printing a dump 
of the memory contents. Overnight I found what I hoped was the 
single bug, and the next day I went back to get another shot at 
the ORACLE. But it was Christmas Eve, the mathematics party 
was in full swing, and the ORACLE was playing Christmas 
carols! I had to wait till after the holidays to get my first list of 
ordered Bragg angles.
Absorption-correction software for the ORACLE
The first crystals that I was able to grow were calcium hydroxide. 

The heavy-atom positions were known from the early x-ray work 
of Bernal and Megaw, who also postulated the hydrogen positions. 
In previous neutron diffraction studies by Levy and Peterson the 
practice had been to grind the samples to a cylindrical shape, 
so that tabulated absorption corrections could be applied. This 
had been done by putting the oriented crystal on a sandblasting 
lathe and grinding the edges off. But calcium hydroxide is a layer 
structure that cleaves like mica, and the sandblaster immediately 
caused the crystals to open up like the pages of a book. This led 
Henri and me to consider whether we could use the ORACLE 
to calculate the absorption correction for a crystal whose shape 
had been carefully measured. 

In the first version of this absorption program, we integrated the 
correction over a few hundred equally spaced scattering points 
within the crystal volume. Later a consultation with mathemati-
cians showed us that we could get better accuracy by selecting 
the points and weighting the contributions according to the rules 
of Gaussian integration. This program and a later Fortran ver-
sion were used for all our neutron-diffraction studies after that. 

Structure-factor data for fifty-three h0l reflections from calcium 
hydroxide were measured at two temperatures, and Henri sug-
gested that we should make a Fourier projection. He had com-
missioned the ORNL Math Panel to prepare a Fourier program 
for us, but our first tries at using that program showed that it 
would be very tedious to use. This led us to prepare a new two-

               Henri Levy and Bill Busing
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dimensional Fourier program more suitable for crystallographic 
purposes. This program initially calculated a look-up table with 
all the values of the sines and cosines that would be needed. Most 
of the rest of the memory was allocated to the map that would be 
produced. The indices and structure factor were read from paper 
tape one reflection at a time, and its contribution was added to 
each point of the map.  After all the reflections had been included 
an output tape was punched so the map would be printed in a 
suitable format to be contoured by hand 
Least-squares software written for the ORACLE
To get more precise coordinates and interatomic distances, 

Henri suggested that we could use the method of least squares. 
My knowledge of least-squares refinement was based on Mar-
genau and Murphy. I was not even aware of the pioneering 
crystallographic least-squares refinement work of Hughes. The 
parameters for calcium hydroxide included two coordinates, 
six anisotropic temperature-factor coefficients, and a scale fac-
tor, for a total of nine parameters. The ORACLE program that 
we wrote was probably designed for this particular problem. 
The appropriate derivatives were used to set up the full matrix, 
and a subroutine was available to solve the nine simultaneous 
equations. The four cycles of least-squares adjustments needed 
for convergence took about twenty minutes of ORACLE time. 

In order to calculate the standard errors of the distances and 
angles, we needed the variance-covariance matrix that could be 
derived from the inverse of the least-squares matrix; but no matrix 
inverter was available for the ORACLE at that time. Instead, we 
inverted the matrix by solving nine simultaneous equations a total 
of nine times, using as the nine column vectors (1,0,0,0,0,0,0,0,0), 
(0,1,0,0,0,0,0,0,0), etc. The nine solution vectors then formed the 
columns of the inverse matrix. 

At about this time Henri and I realized the desirability of 
writing a generalized least-squares program that could be used 
to adjust the parameters defining any arbitrary function. The 
function would be provided by the user, who would need only 
to write a subroutine to evaluate the function based on the pa-
rameters and the values of one or more independent variables 
for which experimental values had been obtained. For example, 
we refined the lattice parameters of diaspore using observations 
of the Bragg angles from an x-ray powder pattern. Here the 
independent variables were the indices, along with an indicator 
as to whether the wavelength for an α1, an α2, or an unresolved 
line should be used. 

A unique feature of this general least-squares program was that 
the user had the option of calculating the required derivatives of 
the function with respect to the parameters or letting the program 
calculate derivatives numerically. In the latter case the user would 
just provide a list of increments to be added to one parameter 
at a time. The function was recalculated with the incremented 
parameter, and the derivative was taken as the ratio of the change 
in the function to the parameter increment. This program and 
its successors were so easy to use that other groups at ORNL 
and elsewhere used it routinely to analyze thermodynamic data, 
spectral patterns, and other complicated functions.

Crystallographic least-squares refinement on the IBM 704
About 1958 an IBM 704 computer became available at the 

gaseous diffusion plant in Oak Ridge. Although this required a 
drive of about seven miles, the advantages over the ORACLE 
were considerable. These included a memory of 8,192 36-bit 
words, hardware floating-point arithmetic, index registers, 
removable magnetic tapes, and punched card input and output. 
An assembler was available to facilitate writing programs that 
would be automatically converted to binary form.

Henri and I decided to write a least-squares program that could 
be used for the refinement of any crystal structure based on x-
ray or neutron-diffraction data. Whenever we couldn’t decide 
how to do something we left it as an option for the user. Thus 
the program could refine a structure based on either F or F2. An 
overall temperature factor or individual isotropic or anisotropic 
temperature factors could be used. Symmetry cards were included 
to allow for the refinement of any centrosymmetric or noncentro-
symmetric structure. Atom multipliers were provided to correctly 
weight atoms in special positions or to treat disordered structures. 
Anomalous scattering factors could be included. Different scale 
factors could be applied to data from different samples. Henri 
and I wrote a program to invert a sym-
metric matrix in the space required to 
store only its unique upper-triangular 
elements. Although this program was 
later shown to be rather inefficient, it 
allowed for the adjustment of up to 120 
parameters in the 8,192-word memory.  
When Carroll Johnson joined our 
group in 1962, he and Henri wrote an 
improved matrix inverter that made use 
of the Choleski method of factoring 
a  symmetric matrix.

We wanted to distribute this program to anyone who requested 
it.  However, with instructions punched  one per card, the source 
program consisted of over 4,000 cards. We considered that this 
would be too  expensive to copy and ship. Instead, we distributed 
copies of the binary card decks that were produced by the assem-
bler.  A handbook was available that gave detailed instructions 
on how to use the program.

In 1961 Kay Martin of the ORNL Math Panel joined our group 
to help with computer programming. Her  first job was to convert 
the structure-factor least-squares program to Fortran. This made 
it easier for us to distribute the source program either on punched 
cards or via magnetic  tape. When the ORACLE was replaced 
by the Control Data 1604 and later by the IBM 360, the Fortran  
program was easily adapted to the new computers. 

Availability of the Fortran source code also allowed others to 
make changes in the program. Jim Ibers and  Walter Hamilton of 
BNL improved the form for input of the symmetry  information. 
Methods of correcting for extinction were introduced. Carroll 
added the ability to  refine more complicated forms of thermal 
motion. No further printed reports were written, but the instruc-
tions included with the distributed program were kept up to date. 
The latest version lists nine  persons as contributing authors. In 
1982 Current Contents listed the 1962 report as a Citation Clas-
sic that  had been cited more than 3000 times. 

         Carroll Johnson
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 The primary purpose of most crystallographic investigations 
is to obtain detailed information about the chemical structures 
of the molecules or ions involved. After the lattice parameters, 
atomic coordinates, and temperature factor coefficients have 
been obtained, it is desirable to calculate bond distances, bond  
angles, torsion angles, and other quantities, some of which de-
pend on the observed thermal motion. It certainly is useful to 
obtain the standard errors of the calculated quantities, and these 
can be calculated in a straightforward way from the variance-
covariance matrix that is proportional to the inverse matrix of 
the  normal equations. 

After completing the first version of our crystallographic 
least-squares program Henri and I proceeded to write a Fortran 
program to calculate some fifteen different kinds of functions 
together with their standard  errors. The functions calculated 
included bond distances, bond angles, torsion  angles, the differ-
ence between two bond distances or angles, the sum of several 
bond angles, and nine more functions involving thermal motion.

 The calculation of standard errors requires the values of the 
derivative of the function with respect to each  parameter involved. 
A unique feature of this program is that, instead of deriving ex-
pressions for these  derivatives, we decided to determine them 
numerically by adding an increment to a parameter,  recalculat-
ing the function, and computing the derivative as the ratio of the 
change in the function to the  parameter increment. This method 
produces a correct result, even when certain parameters are con-
strained by symmetry or for some other reason, provided that the 
constraint is reapplied each time a  parameter is incremented.

 Provision was made for the user to write subroutines defining 
any new functions desired. Available for this purpose were sub-
routines for picking up atomic coordinates and temperature factor 
coefficients, manipulating matrices and vectors, and calculating 
angles. Other mathematical routines could also be  used. This 
program was later modified by Kay Martin to conform to the 
Fortran version of the least-squares  program. It has been kept 
up to date with a few improvements  and has been generally 
distributed on request together with the least-squares program.
Three-circle neutron diffractometer control using paper tape
Shown in Fig. 1 is the three-circle neutron diffractometer 

that we installed in 1960 at the newly operational Oak Ridge 
Research Reactor. A crystal 
monochromator centered in a 
concrete shield reflected the 
neutrons to produce a verti-
cal beam. A General Electric 
diffractometer was mounted 
on its side to support the ap-
propriately counter-weighted 
neutron counter. Centered on 
this instrument was a ring to 
provide the chi-angle orienta-
tion and support the phi-angle 
drive.

Fig. 1: The three-circle paper-tape controlled neutron dif-
fractometer. (Photograph courtesy of ORNL).

This instrument was controlled by electronics that read the 
desired two theta, chi, and phi angles from paper tape. Motors 
would drive each shaft until the encoders registered the desired 
angles. It was arranged that the final adjustment of each angle 
would always be made slowly in the same direction to avoid 
backlash problems.

With this then-new type of instrument we no longer needed to 
orient a crystal sample. We only had to center it and determine its 
orientation by observing the angles for two or more reflections. 
ORACLE programs were written to use this angle information to 
refine the orientation and prepare a tape with the angles for data 
collection. It was arranged that after the electronics had set the 
initial angles it would make a theta-two-theta step scan through 
the reflection, punching the observed counts on an output paper 
tape. This tape was then carried back to the ORACLE for further 
data processing to obtain the integrated count and the peak position 
in two-theta. Assuming that the counter has a large aperture, this 
peak maximum occurs when the reflecting plane best satisfies the 
Bragg condition. Deviations from the calculated two-theta were 
then used to further refine the orientation and lattice parameters.

After the ORACLE was replaced by the Control Data 1604 
computer the three-circle data collection programs were rewritten 
for that machine. The Control Data 160A auxiliary computer was 
used to convert from magnetic tape to paper tape and vice-versa.
Four-circle x-ray diffractometer control using a DEC PDP-5
In the fall of 1962 I went to England to spend a year on sab-

batical working with Owen Mills at the University of Manchester. 
There the computer engineers were in the process of installing 
the Ferranti Atlas supercomputer, a state-of-the-art machine that 
was to run several programs at a time, switching them in and out 
of memory from an auxiliary storage drum. Owen was having 
a four-circle x-ray diffractometer built by Hilger-Watts, and he 
intended to use the Atlas computer to control this instrument. 
Working in this time-sharing mode, the diffractometer would use 
only a small fraction of the computer’s resources.

I wrote computer programs to calculate instrument angles, 
drive motors, center reflections, calculate orientation, and col-
lect intensity data. All these programs were written without the 
presence of the diffractometer that was not delivered until April 
of 1963.  After the diffractometer was interfaced to the computer, 
we were only permitted to test it on Saturday mornings, times set 
aside for computer maintenance. After we got started it seemed 
as though the Atlas would never run for more than about fifteen 
minutes before it crashed. Then we would spend the rest of the 
morning arguing with the engineers as to whether the problem 
was with our software or with the computer hardware. I had to 
leave Manchester before these problems were solved.

When I returned to Oak Ridge we wanted to install an automatic 
four-circle x-ray diffractometer, but I was sure that we didn’t want 
to interface it to a large time-sharing computer. Cole, Okaya, & 
Chambers had recently described a diffractometer controlled 
by a dedicated IBM 1620 computer, but that computer, at about 
$100,000, was too expensive for our budget. Then we learned of 
the DEC PDP-5 computer that was available for about $20,000.

We also knew that Tom Furnas of the Picker X-ray Corpora-
tion had recently designed and built a four-circle diffractometer 
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that Picker intended to market for use with paper-tape control. It 
didn’t take long for us to realize that we could easily control this 
diffractometer with the PDP-5 computer. In 1965 we produced 
the system shown in Fig 2. 

Fig. 2: The 
four-circle Picker 
x-ray diffractom-
eter and the PDP-
5 computer that 
was programmed 
to control it (Pho-
tographs courtesy 
of ORNL)

The PDP-5 (a 
predecessor of the 

PDP-8) had a core memory of 4096 12-bit words divided into 
32 pages of 128 words each. An instruction occupied one word 
and the type of instruction was defined by the first three bits so 
there were only eight different kinds of commands. Six of these 
instructions used seven bits to define an address that could be 
either on the same page or on page zero, but it could also refer 
to any location in the memory by indirect addressing. Hardware 
arithmetic was limited to addition, but a complete package of 
subroutines to perform floating point arithmetic was available. 

Input or output was accomplished by a teletype interfaced 
directly to the computer. Input could be typed or loaded from 
punched-paper tape. Output could be printed or punched on tape.

We decided to use Slo-Syn stepping motors that took one 
hundred steps to make a revolution. The angles of the Picker 
diffractometer were geared to change one degree for each turn 
of a drive shaft. Thus, with a motor on each shaft, the angles 
two-theta, omega, chi, and phi could be set to the nearest 0.01 
degree without the use of encoders. To provide a check on the 
angles ORNL engineers designed an optical detector to signal 
the computer at each even degree.

A feature of the PDP-5 that was new to us was the availability 
of a hardware interrupt. Thus any external action, such as the 
typing of a teletype key or the closing of a limit switch, could 
interrupt the program that was operating and jump to a special 
interrupt program. We knew that the Slo-Syn motors could run 
smoothly at 300 pulses per second, so we arranged for a crystal-
controlled oscillator to interrupt the computer 300 times each 
second. An interrupt program would check to see which motors 
should be running and send a single pulse to step that motor 
forward or backward. Every 30th clock interrupt was treated as 
a tenth-of-a-second interrupt and used for timing counts or any 
required delays.

At about the time the PDP-5 was delivered, Sharron King of 
the ORNL Mathematics Division joined our group to help with 
the diffractometer programming.  Although an assembler pro-
gram was available for the PDP-5, we found it useful to create 
an assembler program, written in Fortran, to run on the CDC 
1604 and 160A computers. We put our instructions on punched 
cards, and the assembler produced a binary tape that could be 
loaded into the PDP-5.

The subroutines for floating point arithmetic, trigonometric 

functions, and matrix operations took up about half of the memory. 
The other half would be loaded with programs for the particular 
operations we were performing. A setup program would be used 
to search for reflections, center them, and establish initial lattice 
parameters and sample orientation. Then a least-squares program 
could be loaded to refine this information. Finally, a data col-
lection program would measure the reflections systematically, 
making step scans and punching the results on paper tape. This 
output tape would be processed further by the CDC computers.

This data collection system remained in operation for almost 
twenty years. When it was acquired, the PDP-5 was one of the first 
minicomputers at ORNL. 
When it was finally decom-
missioned it was the oldest 
computer at the laboratory.

This has been the story of 
one group’s experiences in 
the early uses of computers 
for crystallography. Ev-
erything seemed new and 
exciting at the time we were 
working on it. We certainly 
never envisioned the days 
when similar things could be 
done on a laptop computer 
at unimagined speeds. But 
that seems to be the way science works.

Bill Busing


